Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension.
نویسندگان
چکیده
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein implicated in the transcriptional activation of genes encoding erythropoietin, glycolytic enzymes, and vascular endothelial growth factor in hypoxic mammalian cells. In this study, we have quantitated HIF-1 DNA-binding activity and protein levels of the HIF-1 alpha and HIF-1 beta subunits in human HeLa cells exposed to O2 concentrations ranging from 0 to 20% in the absence or presence of 1 mM KCN to inhibit oxidative phosphorylation and cellular O2 consumption. HIF-1 DNA-binding activity, HIF-1 alpha protein and HIF-1 beta protein each increased exponentially as cells were subjected to decreasing O2 concentrations, with a half maximal response between 1.5 and 2% O2 and a maximal response at 0.5% O2, both in the presence and absence of KCN. The HIF-1 response was greatest over O2 concentrations associated with ischemic/hypoxic events in vivo. These results provide evidence for the involvement of HIF-1 in O2 homeostasis and represent a functional characterization of the putative O2 sensor that initiates hypoxia signal transduction leading to HIF-1 expression.
منابع مشابه
Cell cycle progression in glioblastoma cells is unaffected by pathophysiological levels of hypoxia
Hypoxia is associated with the increased malignancy of a broad range of solid tumours. While very severe hypoxia has been widely shown to induce cell cycle arrest, the impact of pathophysiological hypoxia on tumour cell proliferation is poorly understood. The aim of this study was to investigate the effect of different oxygen levels on glioblastoma (GBM) cell proliferation and survival. GBM is ...
متن کاملLow oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro
BACKGROUND In human IVF, embryos cultured with a lower O2 tension (5%) can give rise to higher success rates when compared with normoxic conditions (20%). However, the mechanisms behind the beneficial effects of reduced oxygen tension in embryogenesis remain unclear. The aim of this study was to evaluate the expression of oxygen related and antioxidant genes and mitochondrial function in mouse ...
متن کاملDefining the Role of Oxygen Tension in Human Neural Progenitor Fate
Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here, we show that low O2 tension and hypox...
متن کاملHypoxia Induces a Metabolic Shift and Enhances the Stemness and Expansion of Cochlear Spiral Ganglion Stem/Progenitor Cells
Previously, we demonstrated that hypoxia (1% O2) enhances stemness markers and expands the cell numbers of cochlear stem/progenitor cells (SPCs). In this study, we further investigated the long-term effect of hypoxia on stemness and the bioenergetic status of cochlear spiral ganglion SPCs cultured at low oxygen tensions. Spiral ganglion SPCs were obtained from postnatal day 1 CBA/CaJ mouse pups...
متن کاملEvolution of Cytochrome c Oxidase IV Regulation in Mammals
Aerobic respiration, although metabolically advantageous in O2-rich environments, can be detrimental to the cell when O2 is not fully reduced resulting in cytotoxic reactive oxygen species (ROS) production. Cytochrome c oxidase subunit 4 (COX-4) is primarily responsible for fully reducing O2 during metabolism and exists as COX4-1 and COX4-2 isoforms. The former exists in normoxia, but is replac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 271 4 Pt 1 شماره
صفحات -
تاریخ انتشار 1996